Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Ther Nucleic Acids ; 34: 102081, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38111915

RESUMO

MicroRNAs (miRNAs) control the expression of diverse subsets of target mRNAs, and studies have found miRNA dysregulation in failing hearts. Expression of miR-29 is abundant in heart, increases with aging, and is altered in cardiomyopathies. Prior studies demonstrate that miR-29 reduction via genetic knockout or pharmacologic blockade can blunt cardiac hypertrophy and fibrosis in mice. Surprisingly, this depended on specifically blunting miR-29 actions in cardiomyocytes versus fibroblasts. To begin developing more translationally relevant vectors, we generated a novel transgene-encoded miR-29 inhibitor (TuD-29) that can be incorporated into a viral-mediated gene therapy for cardioprotection. Here, we corroborate that miR-29 expression and activity is higher in cardiomyocytes versus fibroblasts and demonstrate that TuD-29 effectively blunts hypertrophic responses in cultured cardiomyocytes and mouse hearts. Furthermore, we found that adeno-associated virus (AAV)-mediated miR-29 overexpression in mouse hearts induces early diastolic dysfunction, whereas AAV:TuD-29 treatment improves cardiac output by increasing end-diastolic and stroke volumes. The integration of RNA sequencing and miRNA-target interactomes reveals that miR-29 regulates genes involved in calcium handling, cell stress and hypertrophy, metabolism, ion transport, and extracellular matrix remodeling. These investigations support a likely versatile role for miR-29 in influencing myocardial compliance and relaxation, potentially providing a unique therapeutic avenue to improve diastolic function in heart failure patients.

2.
J Appl Physiol (1985) ; 132(6): 1432-1447, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482328

RESUMO

In older individuals, hypertrophy from progressive resistance training (PRT) is compromised in approximately one-third of participants in exercise trials. The objective of this study was to establish novel relationships between baseline muscle features and/or their PRT-induced change in vastus lateralis muscle biopsies with hypertrophy outcomes. Multiple linear regression analyses adjusted for sex were performed on phenotypic data from older adults (n = 48 participants, 70.8 ± 4.5 yr) completing 14 wk of PRT. Results show that baseline muscle size associates with growth regardless of hypertrophy outcome measure [fiber cross-sectional area (fCSA), ß = -0.76, Adj. P < 0.01; thigh muscle area by computed tomography (CT), ß = -0.75, Adj. P < 0.01; dual-energy X-ray absorptiometry (DXA) thigh lean mass, ß = -0.47, Adj. P < 0.05]. Furthermore, loosely packed collagen organization (CO, ß = -0.44, Adj. P < 0.05) and abundance of CD11b+/CD206- immune cells (ß = -0.36, Adj. P = 0.10) were negatively associated with whole muscle hypertrophy, with a significant sex interaction on the latter. In addition, a composite hypertrophy score generated using all three measures reinforces significant fiber level findings that changes in myonuclei (MN) (ß = 0.67, Adj. P < 0.01), changes in immune cells (ß = 0.48, Adj. P < 0.05; both CD11b+/CD206+and CD11b+/CD206- cells), and capillary density (ß = 0.56, Adj. P < 0.01) are significantly associated with growth. Exploratory single-cell RNA-sequencing of CD11b+ cells in muscle in response to resistance exercise showed that macrophages have a mixed phenotype. Collagen associations with macrophages may be an important aspect in muscle response heterogeneity. Detailed histological phenotyping of muscle combined with multiple measures of growth response to resistance training in older persons identify potential new mechanisms underlying response heterogeneity and possible sex differences.NEW & NOTEWORTHY Extensive analyses of muscle features associated with muscle size and resistance training response in older persons, including sex differences, and evaluation of multiple measures of hypertrophy are discussed. Collagen organization and CD11b-expressing immune cells offer potential new targets to augment growth response in older individuals. A hypertrophy composite score reveals that changes in immune cells, myonuclei, and capillary density are critically important for overall muscle growth while sc-RNAseq reveals evidence for macrophage heterogeneity.


Assuntos
Treinamento de Força , Idoso , Idoso de 80 Anos ou mais , Colágeno , Feminino , Humanos , Hipertrofia , Masculino , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia
3.
Function (Oxf) ; 3(3): zqac015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434632

RESUMO

Aging is accompanied by reduced remodeling of skeletal muscle extracellular matrix (ECM), which is exacerbated during recovery following periods of disuse atrophy. Mechanotherapy has been shown to promote ECM remodeling through immunomodulation in adult muscle recovery, but not during the aged recovery from disuse. In order to determine if mechanotherapy promotes ECM remodeling in aged muscle, we performed single cell RNA sequencing (scRNA-seq) of all mononucleated cells in adult and aged rat gastrocnemius muscle recovering from disuse, with (REM) and without mechanotherapy (RE). We show that fibroadipogenic progenitor cells (FAPs) in aged RE muscle are highly enriched in chemotaxis genes (Csf1), but absent in ECM remodeling genes compared to adult RE muscle (Col1a1). Receptor-ligand (RL) network analysis of all mononucleated cell populations in aged RE muscle identified chemotaxis-enriched gene expression in numerous stromal cell populations (FAPs, endothelial cells, pericytes), despite reduced enrichment of genes related to phagocytic activity in myeloid cell populations (macrophages, monocytes, antigen presenting cells). Following mechanotherapy, aged REM mononuclear cell gene expression resembled adult RE muscle as evidenced by RL network analyses and KEGG pathway activity scoring. To validate our transcriptional findings, ECM turnover was measured in an independent cohort of animals using in vivo isotope tracing of intramuscular collagen and histological scoring of the ECM, which confirmed mechanotherapy-mediated ECM remodeling in aged RE muscle. Our results highlight age-related cellular mechanisms underpinning the impairment to complete recovery from disuse, and also promote mechanotherapy as an intervention to enhance ECM turnover in aged muscle recovering from disuse.


Assuntos
Células Endoteliais , Transtornos Musculares Atróficos , Ratos , Animais , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Macrófagos , Matriz Extracelular
4.
FASEB J ; 36(2): e22155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044708

RESUMO

The extracellular matrix (ECM) in skeletal muscle plays an integral role in tissue development, structural support, and force transmission. For successful adaptation to mechanical loading, remodeling processes must occur. In a large cohort of older adults, transcriptomics revealed that genes involved in ECM remodeling, including matrix metalloproteinase 14 (MMP14), were the most upregulated following 14 weeks of progressive resistance exercise training (PRT). Using single-cell RNA-seq, we identified macrophages as a source of Mmp14 in muscle following a hypertrophic exercise stimulus in mice. In vitro contractile activity in myotubes revealed that the gene encoding cytokine leukemia inhibitory factor (LIF) is robustly upregulated and can stimulate Mmp14 expression in macrophages. Functional experiments confirmed that modulation of this muscle cell-macrophage axis facilitated Type I collagen turnover. Finally, changes in LIF expression were significantly correlated with MMP14 expression in humans following 14 weeks of PRT. Our experiments reveal a mechanism whereby muscle fibers influence macrophage behavior to promote ECM remodeling in response to mechanical loading.


Assuntos
Matriz Extracelular/metabolismo , Leucócitos Mononucleares/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adulto , Idoso , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Feminino , Humanos , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Treinamento de Força/métodos
5.
iScience ; 24(8): 102838, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34368654

RESUMO

Skeletal muscle is composed of post-mitotic myofibers that form a syncytium containing hundreds of myonuclei. Using a progressive exercise training model in the mouse and single nucleus RNA-sequencing (snRNA-seq) for high-resolution characterization of myonuclear transcription, we show myonuclear functional specialization in muscle. After 4 weeks of exercise training, snRNA-seq reveals that resident muscle stem cells, or satellite cells, are activated with acute exercise but demonstrate limited lineage progression while contributing to muscle adaptation. In the absence of satellite cells, a portion of nuclei demonstrates divergent transcriptional dynamics associated with mixed-fate identities compared with satellite cell replete muscles. These data provide a compendium of information about how satellite cells influence myonuclear transcription in response to exercise.

6.
Function (Oxf) ; 2(1): zqaa033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109314

RESUMO

Satellite cells are required for postnatal development, skeletal muscle regeneration across the lifespan, and skeletal muscle hypertrophy prior to maturity. Our group has aimed to address whether satellite cells are required for hypertrophic growth in mature skeletal muscle. Here, we generated a comprehensive characterization and transcriptome-wide profiling of skeletal muscle during adaptation to exercise in the presence or absence of satellite cells in order to identify distinct phenotypes and gene networks influenced by satellite cell content. We administered vehicle or tamoxifen to adult Pax7-DTA mice and subjected them to progressive weighted wheel running (PoWeR). We then performed immunohistochemical analysis and whole-muscle RNA-seq of vehicle (SC+) and tamoxifen-treated (SC-) mice. Further, we performed single myonuclear RNA-seq to provide detailed information on how satellite cell fusion affects myonuclear transcription. We show that while skeletal muscle can mount a robust hypertrophic response to PoWeR in the absence of satellite cells, growth, and adaptation are ultimately blunted. Transcriptional profiling reveals several gene networks key to muscle adaptation are altered in the absence of satellite cells.


Assuntos
Condicionamento Físico Animal , Células Satélites de Músculo Esquelético , Camundongos , Animais , Atividade Motora , Músculo Esquelético , Hipertrofia , Tamoxifeno
7.
FASEB J ; 35(6): e21644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34033143

RESUMO

How regular physical activity is able to improve health remains poorly understood. The release of factors from skeletal muscle following exercise has been proposed as a possible mechanism mediating such systemic benefits. We describe a mechanism wherein skeletal muscle, in response to a hypertrophic stimulus induced by mechanical overload (MOV), released extracellular vesicles (EVs) containing muscle-specific miR-1 that were preferentially taken up by epidydimal white adipose tissue (eWAT). In eWAT, miR-1 promoted adrenergic signaling and lipolysis by targeting Tfap2α, a known repressor of Adrß3 expression. Inhibiting EV release prevented the MOV-induced increase in eWAT miR-1 abundance and expression of lipolytic genes. Resistance exercise decreased skeletal muscle miR-1 expression with a concomitant increase in plasma EV miR-1 abundance, suggesting a similar mechanism may be operative in humans. Altogether, these findings demonstrate that skeletal muscle promotes metabolic adaptations in adipose tissue in response to MOV via EV-mediated delivery of miR-1.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Exercício Físico , Vesículas Extracelulares/fisiologia , Lipólise , MicroRNAs/genética , Músculo Esquelético/fisiopatologia , Estresse Mecânico , Fator de Transcrição AP-2/metabolismo , Adolescente , Adulto , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fator de Transcrição AP-2/genética , Adulto Jovem
8.
iScience ; 24(4): 102372, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33948557

RESUMO

Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses Wisp1 expression required for appropriate ECM remodeling. Late-stage communication from myogenic cells during loading is widespread but may be targeted toward endothelial cells. Satellite cells coordinate adaptation by influencing the phenotype of recipient cells, which extends our understanding of their role in muscle adaptation beyond regeneration and myonuclear donation.

9.
Physiol Genomics ; 53(5): 206-221, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870722

RESUMO

The skeletal muscle hypertrophic response to resistance exercise training (RT) is highly variable across individuals. The molecular underpinnings of this heterogeneity are unclear. This study investigated transcriptional networks linked to RT-induced muscle hypertrophy, classified as 1) predictive of hypertrophy, 2) responsive to RT independent of muscle hypertrophy, or 3) plastic with hypertrophy. Older adults (n = 31, 18 F/13 M, 70 ± 4 yr) underwent 14-wk RT (3 days/wk, alternating high-low-high intensity). Muscle hypertrophy was assessed by pre- to post-RT change in mid-thigh muscle cross-sectional area (CSA) [computed tomography (CT), primary outcome] and thigh lean mass [dual-energy X-ray absorptiometry (DXA), secondary outcome]. Transcriptome-wide poly-A RNA-seq was performed on vastus lateralis tissue collected pre- (n = 31) and post-RT (n = 22). Prediction networks (using only baseline RNA-seq) were identified by weighted gene correlation network analysis (WGCNA). To identify Plasticity networks, WGCNA change indices for paired samples were calculated and correlated to changes in muscle size outcomes. Pathway-level information extractor (PLIER) was applied to identify Response networks and link genes to biological annotation. Prediction networks (n = 6) confirmed transcripts previously connected to resistance/aerobic training adaptations in the MetaMEx database while revealing novel member genes that should fuel future research to understand the influence of baseline muscle gene expression on hypertrophy. Response networks (n = 6) indicated RT-induced increase in aerobic metabolism and reduced expression of genes associated with spliceosome biology and type-I myofibers. A single exploratory Plasticity network was identified. Findings support that interindividual differences in baseline gene expression may contribute more than RT-induced changes in gene networks to muscle hypertrophic response heterogeneity. Code/Data: https://github.com/kallavin/MASTERS_manuscript/tree/master.


Assuntos
Redes Reguladoras de Genes , Treinamento de Força , Aumento do Músculo Esquelético/genética , Absorciometria de Fóton , Idoso , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia
10.
Geroscience ; 43(2): 629-644, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33462708

RESUMO

Preserving muscle mass and strength is critical for long-term health and longevity. Age-related muscle lipid accumulation has been shown to be detrimental to muscle health. In healthy older individuals, we sought to determine whether muscle lipid content, determined from computed tomography, is associated with self-reported physical function, laboratory-measured performance, and the response to progressive resistance training (PRT), and how metformin may alter these responses (N = 46 placebo, 48 metformin). Using multiple linear regression models adjusted for confounders in a large cohort, we show that intermuscular adipose tissue (IMAT) was not associated with baseline function or response to PRT, contrary to previous reports. On the other hand, thigh muscle density (TMD), as an indicator of intra- and extramyocellular lipid (IMCL and EMCL), remained strongly and independently positively associated with physical function and performance following adjustment. Baseline TMD was inversely associated with gains in strength, independent of muscle mass. Percent change in TMD was positively associated with improved chair stand and increased type II fiber frequency but was not associated with muscle hypertrophy or overall strength gain following PRT. For the first time, we show that metformin use during PRT blunted density and strength gains by inhibiting fiber type switching primarily in those with low baseline TMD. These results indicate that participants with higher muscle lipid content derive the most performance benefit from PRT. Our results further indicate that muscle density may be as influential as muscle size for strength, physical function, and performance in healthy older adults. ClinicalTrials.gov , NCT02308228, Registered on 25 November 2014.


Assuntos
Metformina , Treinamento de Força , Idoso , Humanos , Lipídeos , Metformina/uso terapêutico , Força Muscular , Músculo Esquelético
11.
Aging (Albany NY) ; 12(20): 19852-19866, 2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33071237

RESUMO

Evidence from clinical trials and observational studies suggests that both progressive resistance exercise training (PRT) and metformin delay a variety of age-related morbidities. Previously, we completed a clinical trial testing the effects of 14 weeks of PRT + metformin (metPRT) compared to PRT with placebo (plaPRT) on muscle hypertrophy in older adults. We found that metformin blunted PRT-induced muscle hypertrophic response. To understand potential mechanisms underlying the inhibitory effect of metformin on PRT, we analyzed the muscle transcriptome in 23 metPRT and 24 plaPRT participants. PRT significantly increased expression of genes involved in extracellular matrix remodeling pathways, and downregulated RNA processing pathways in both groups, however, metformin attenuated the number of differentially expressed genes within these pathways compared to plaPRT. Pathway analysis showed that genes unique to metPRT modulated aging-relevant pathways, such as cellular senescence and autophagy. Differentially expressed genes from baseline biopsies in older adults compared to resting muscle from young volunteers were reduced following PRT in plaPRT and were further reduced in metPRT. We suggest that although metformin may blunt pathways induced by PRT to promote muscle hypertrophy, adjunctive metformin during PRT may have beneficial effects on aging-associated pathways in muscle from older adults.


Assuntos
Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Músculo Quadríceps/efeitos dos fármacos , Treinamento de Força , Aumento do Músculo Esquelético/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Adaptação Fisiológica , Idoso , Alabama , Método Duplo-Cego , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Kentucky , Masculino , Músculo Quadríceps/crescimento & desenvolvimento , Músculo Quadríceps/metabolismo , Fatores de Tempo , Resultado do Tratamento
12.
FASEB J ; 34(5): 7018-7035, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32246795

RESUMO

Over the past 20 years, various identifiers of cellular senescence have been used to quantify the abundance of these cells in different tissues. These include classic markers such as p16, senescence-associated ß-gal, and γH2AX, in addition to more recent markers (Sudan Black B and HMGB1). In vivo data on the usefulness of these markers in skeletal muscle are very limited and inconsistent. In the present study, we attempted to identify senescent cells in frozen human skeletal muscle biopsies using these markers to determine the effects of age and obesity on senescent cell burden; however, we were only able to assess the abundance of DNA-damaged nuclei using γH2AX immunohistochemistry. The abundance of γH2AX+ cells, including satellite cells, was not higher in muscle from old compared to young individuals; however, γH2AX+ cells were higher with obesity. Additionally, terminally differentiated, postmitotic myofiber nuclei from obese individuals had elevated γH2AX abundance compared to muscle from lean individuals. Analyses of gene expression support the conclusion that the elevated DNA damage and the senescence-associated secretory phenotype are preferentially associated with obesity in skeletal muscle. These data implicate obesity as a larger contributor to DNA damage in skeletal muscle than aging; however, more sensitive senescence markers for human skeletal muscle are needed to determine if these cells are in fact senescent.


Assuntos
Envelhecimento/metabolismo , Histonas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Biomarcadores/metabolismo , Diferenciação Celular , Senescência Celular , Dano ao DNA , Reparo do DNA/genética , Feminino , Humanos , Imuno-Histoquímica , Masculino , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Obesidade/patologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Adulto Jovem
13.
Aging Cell ; 18(6): e13039, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557380

RESUMO

Progressive resistance exercise training (PRT) is the most effective known intervention for combating aging skeletal muscle atrophy. However, the hypertrophic response to PRT is variable, and this may be due to muscle inflammation susceptibility. Metformin reduces inflammation, so we hypothesized that metformin would augment the muscle response to PRT in healthy women and men aged 65 and older. In a randomized, double-blind trial, participants received 1,700 mg/day metformin (N = 46) or placebo (N = 48) throughout the study, and all subjects performed 14 weeks of supervised PRT. Although responses to PRT varied, placebo gained more lean body mass (p = .003) and thigh muscle mass (p < .001) than metformin. CT scan showed that increases in thigh muscle area (p = .005) and density (p = .020) were greater in placebo versus metformin. There was a trend for blunted strength gains in metformin that did not reach statistical significance. Analyses of vastus lateralis muscle biopsies showed that metformin did not affect fiber hypertrophy, or increases in satellite cell or macrophage abundance with PRT. However, placebo had decreased type I fiber percentage while metformin did not (p = .007). Metformin led to an increase in AMPK signaling, and a trend for blunted increases in mTORC1 signaling in response to PRT. These results underscore the benefits of PRT in older adults, but metformin negatively impacts the hypertrophic response to resistance training in healthy older individuals. ClinicalTrials.gov Identifier: NCT02308228.


Assuntos
Exercício Físico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Treinamento de Força , Idoso , Idoso de 80 Anos ou mais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Método Duplo-Cego , Feminino , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
14.
Am J Physiol Cell Physiol ; 317(4): C719-C724, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314585

RESUMO

It is postulated that testosterone-induced skeletal muscle hypertrophy is driven by myonuclear accretion as the result of satellite cell fusion. To directly test this hypothesis, we utilized the Pax7-DTA mouse model to deplete satellite cells in skeletal muscle followed by testosterone administration. Pax7-DTA mice (6 mo of age) were treated for 5 days with either vehicle [satellite cell replete (SC+)] or tamoxifen [satellite cell depleted (SC-)]. Following a washout period, a testosterone propionate or sham pellet was implanted for 21 days. Testosterone administration caused a significant increase in muscle fiber cross-sectional area in SC+ and SC- mice in both oxidative (soleus) and glycolytic (plantaris and extensor digitorum longus) muscles. In SC+ mice treated with testosterone, there was a significant increase in both satellite cell abundance and myonuclei that was completely absent in testosterone-treated SC- mice. These findings provide direct evidence that testosterone-induced muscle fiber hypertrophy does not require an increase in satellite cell abundance or myonuclear accretion.Listen to a podcast about this Rapid Report with senior author E. E. Dupont-Versteegden (https://ajpcell.podbean.com/e/podcast-on-paper-that-shows-testosterone-induced-skeletal-muscle-hypertrophy-does-not-need-muscle-stem-cells/).


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Testosterona/farmacologia , Animais , Modelos Animais de Doenças , Hipertrofia/induzido quimicamente , Camundongos Transgênicos , Fibras Musculares Esqueléticas/fisiologia , Fator de Transcrição PAX7/genética , Células Satélites de Músculo Esquelético/fisiologia
15.
Am J Sports Med ; 47(6): 1385-1395, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30995070

RESUMO

BACKGROUND: Anterior cruciate ligament (ACL) tears result in significant quadriceps muscle atrophy that is resistant to recovery despite extensive rehabilitation. Recent work suggests an elevated fibrotic burden in the quadriceps muscle after the injury, which may limit recovery. Elucidating the mechanisms and cell types involved in the progression of fibrosis is critical for developing new treatment strategies. PURPOSE: To identify factors contributing to the elevated fibrotic burden found after the injury. STUDY DESIGN: Descriptive laboratory study. METHODS: After an ACL injury, muscle biopsy specimens were obtained from the injured and noninjured vastus lateralis of young adults (n = 14, mean ± SD: 23 ± 4 years). The expression of myostatin, transforming growth factor ß, and other regulatory factors was measured, and immunohistochemical analyses were performed to assess turnover of extracellular matrix components. RESULTS: Injured limb skeletal muscle demonstrated elevated myostatin gene ( P < .005) and protein ( P < .0005) expression, which correlated ( R2 = 0.38, P < .05) with fibroblast cell abundance. Immunohistochemical analysis showed that human fibroblasts express the activin type IIB receptor and that isolated primary human muscle-derived fibroblasts increased proliferation after myostatin treatment in vitro ( P < .05). Collagen 1 and fibronectin, primary components of the muscle extracellular matrix, were significantly higher in the injured limb ( P < .05). The abundance of procollagen 1-expressing cells as well as a novel index of collagen remodeling was also elevated in the injured limb ( P < .05). CONCLUSION: These findings support a role for myostatin in promoting fibrogenic alterations within skeletal muscle after an ACL injury. CLINICAL RELEVANCE: The current work shows that the cause of muscle quality decline after ACL injury likely involves elevated myostatin expression, and future studies should explore therapeutic inhibition of myostatin to facilitate improvements in muscle recovery and return to sport.


Assuntos
Lesões do Ligamento Cruzado Anterior/complicações , Atrofia Muscular/patologia , Miostatina/genética , Receptores de Activinas Tipo II/metabolismo , Adulto , Proliferação de Células , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Adulto Jovem
16.
Sci Rep ; 9(1): 969, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700754

RESUMO

Skeletal muscle macrophages participate in repair and regeneration following injury. However, their role in physiological adaptations to exercise is unexplored. We determined whether endurance exercise training (EET) alters macrophage content and characteristics in response to resistance exercise (RE), and whether macrophages are associated with other exercise adaptations. Subjects provided vastus lateralis biopsies before and after one bout of RE, after 12 weeks of EET (cycling), and after a final bout of RE. M2 macrophages (CD11b+/CD206+) did not increase with RE, but increased in response to EET (P < 0.01). Increases in M2 macrophages were positively correlated with fiber hypertrophy (r = 0.49) and satellite cells (r = 0.47). M2c macrophages (CD206+/CD163+) also increased following EET (P < 0.001), and were associated with fiber hypertrophy (r = 0.64). Gene expression was quantified using NanoString. Following EET, the change in M2 macrophages was positively associated with changes in HGF, IGF1, and extracellular matrix genes. EET decreased expression of IL6 (P < 0.05), C/EBPß (P < 0.01), and MuRF (P < 0.05), and increased expression of IL-4 (P < 0.01), TNFα (P < 0.01) and the TWEAK receptor FN14 (P < 0.05). The change in FN14 gene expression was inversely associated with changes in C/EBPß (r = -0.58) and MuRF (r = -0.46) following EET. In cultured human myotubes, siRNA inhibition of FN14 increased expression of C/EBPß (P < 0.05) and MuRF (P < 0.05). Our data suggest that macrophages contribute to the muscle response to EET, potentially including modulation of TWEAK-FN14 signaling.


Assuntos
Adaptação Fisiológica , Macrófagos/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Treinamento de Força , Adulto , Idoso , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Feminino , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Resistência Física , Células Satélites de Músculo Esquelético/metabolismo
17.
Bio Protoc ; 8(12)2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30148186

RESUMO

Macrophages have well-characterized roles in skeletal muscle repair and regeneration. Relatively little is known regarding the role of resident macrophages in skeletal muscle homeostasis, extracellular matrix remodeling, growth, metabolism and adaptation to various stimuli including exercise and training. Despite speculation into macrophage contributions during these processes, studies characterizing macrophages in non-injured muscle are limited and methods used to identify macrophages vary. A standardized method for the identification of human resident skeletal muscle macrophages will aide in the characterization of these immune cells and allow for the comparison of results across studies. Here, we present an immunohistochemistry (IHC) protocol, validated by flow cytometry, to distinctly identify resident human skeletal muscle macrophage populations. We show that CD11b and CD206 double IHC effectively identifies macrophages in human skeletal muscle. Furthermore, the majority of macrophages in non-injured human skeletal muscle show a 'mixed' M1/M2 phenotype, expressing CD11b, CD14, CD68, CD86 and CD206. A relatively small population of CD11b+/CD206- macrophages are present in resting skeletal muscle. Changes in the relative abundance of this population may reflect important changes in the skeletal muscle environment. CD11b and CD206 IHC in muscle also reveals distinct morphological features of macrophages that may be related to the functional status of these cells.

18.
Trials ; 18(1): 192, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28441958

RESUMO

BACKGROUND: Muscle mass and strength are strong determinants of a person's quality of life and functional independence with advancing age. While resistance training is the most effective intervention to combat age-associated muscle atrophy (sarcopenia), the ability of older adults to increase muscle mass and strength in response to training is blunted and highly variable. Thus, finding novel ways to complement resistance training to improve muscle response and ultimately quality of life among older individuals is critical. The purpose of this study is to determine whether a commonly prescribed medication called metformin can be repurposed to improve the response to resistance exercise training by altering the muscle tissue inflammatory environment. METHODS/DESIGN: Individuals aged 65 and older are participating in a two-site, randomized, double-blind, placebo-controlled trial testing the effects of metformin or placebo on muscle size, strength, and physical function when combined with a progressive resistance training program. Participants consume 1700 mg of metformin per day or placebo for 2 weeks before engaging in a 14-week progressive resistance training regimen, with continued metformin or placebo. Participants are then monitored post-training to determine if the group taking metformin derived greater overall benefit from training in terms of muscle mass and strength gains than those on placebo. Muscle biopsies are taken from the vastus lateralis at three time points to assess individual cellular and molecular adaptations to resistance training and also changes in response to metformin. DISCUSSION: The response of aged muscles to a resistance training program does not always result in a positive outcome; some individuals even experience a loss in muscle mass following resistance training. Thus, adjuvant therapies, including pharmacological ones, are required to optimize response to training in those who do not respond and may be at increased risk of frailty. This is the first known metformin repurposing trial in non-diseased individuals, aimed specifically at the resistance exercise "non-responder" phenotype present in the aging population. The overall goal of this trial is to determine if combined exercise-metformin intervention therapy will benefit older individuals by promoting muscle hypertrophy and strength gains, thereby maintaining functional independence. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02308228 . Registered on 25 November 2014.


Assuntos
Metformina/uso terapêutico , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Treinamento de Força , Sarcopenia/terapia , Fatores Etários , Idoso , Envelhecimento , Alabama , Protocolos Clínicos , Método Duplo-Cego , Feminino , Avaliação Geriátrica , Humanos , Kentucky , Masculino , Metformina/efeitos adversos , Músculo Esquelético/fisiopatologia , Recuperação de Função Fisiológica , Projetos de Pesquisa , Fatores de Risco , Sarcopenia/diagnóstico , Sarcopenia/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
19.
Age (Dordr) ; 38(1): 15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26803818

RESUMO

We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p < 0.0001). Beginning at 6 months of age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p < 0.0001) beginning at 9 months of age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p < 0.0001), with higher ratios for the SHAM mice and lower ratios for the ATFL/CFL and SHAMSED mice in response to physical activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p < 0.0001). Regular physical activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan.


Assuntos
Envelhecimento/fisiologia , Traumatismos do Tornozelo/fisiopatologia , Esforço Físico/fisiologia , Função Ventricular Esquerda/fisiologia , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos CBA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...